If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-15x-36=0
a = 5; b = -15; c = -36;
Δ = b2-4ac
Δ = -152-4·5·(-36)
Δ = 945
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{945}=\sqrt{9*105}=\sqrt{9}*\sqrt{105}=3\sqrt{105}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-3\sqrt{105}}{2*5}=\frac{15-3\sqrt{105}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+3\sqrt{105}}{2*5}=\frac{15+3\sqrt{105}}{10} $
| 18+18x=9+11x | | 7e-15=0 | | 6x2-10x-60=0 | | 5(-3/5+3)=x | | 9x+4=-4+5x+6 | | 0.025x+3x=0.031x | | (20-b)(2+b)=800 | | 7y+3(y-7=6(y+1)-4 | | 1/2x+7/4=2/3 | | (-4x-72)/3=-12 | | 0,25x+x=0 | | 0=-y^2+6y | | 7x^2-15x-36=0 | | N-5x2/3=3/4 | | 1/6x-4/5=2 | | 7x-9x2=5x6 | | b+4÷2=5 | | 3+(x+4)=-3 | | 2/3x+1/4=5 | | 19+18x=9+11x | | 100+6=n | | Y=7x-7x-9 | | 2x+2=3-(6x-2) | | -28=24-4x | | 3n+6=63 | | 3|y-8|+15=21 | | 2(4×-12)+3x=6x+6 | | F(4)=-2x+4 | | -9+(y÷-3)=-6 | | -2x-5(x-1)=-3(2x+5) | | 3x/11=-3x/6 | | 5^x+5^(x+2)=50 |